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Electroviscoelastic Rayleigh-Taylor instability of Maxwell 
fluids: I. Effect of a constant tangential electric field 
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Department of Mathemati-Faculty of Education, Ain Shams University-Heliopolis. Cairo, 
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Abshact The stability of the Rayleigh-Taylor model for an electroviscwiastic Maxwell fluid are 
investigated. The method of multiple scales is used in order to obtain the stability conditions. A 
transcendental dispersion relation is obtained at zero-order. The special case, when the two fluids 
have the same kinematic viscosity, is considered to relax the complexiw of the transcendental 
dispersion relation. The solvability conditions introduce a first-order differential equation. It 
is found that the increase in.the relaxation time A has a destabilizing influence. Also the 
increase in the kinematic viscosity in the presence of the parameter .I yields a destabilizing 
effect The increase in the kinenpic viscosity in the absence of elasticity (pure viscous fluids) 
has a stabilizing effect. 

1. Introduction 

In the classical linearized theory of elasticity, the stress in a sheared body is proportional 
to the amount of shear. In the NavierStokes theory of viscosity the shearing stress is 
proportional to the rate of the shear. In most materials under appropriate circumstances. 
effects of both elasticity and viscosity are noticeable. If these effects are not further 
complicated by behaviour that is unlike either elasticity or viscosity, we call the material 
viscoelastic. The term viscoelastic will be used to describe the properties of any material 
which, under the appropriate conditions, is able both to store energy in elastic deformation 
and to dissipate energy as heat. If the strain and the rate of strain are kept sufficiently small 
so that the ratio of stress to strain is a function of time (or frequency) only and independent of 
the stress level, the material is said to show linear viscoelastic behaviour. Linear behaviour 
is easily obtained in dynamic (oscillatory) experiments where the amplitude of deformation 
is usually extremely small. 

The dynamic behaviour of fluids, when the existing moiecules are in equilibrium, is 
disturbed by an applied stress. The stress may be mechanical, shear or compression, or, 
in the case of polar molecules, it may be applied electrically. The attainment of a new 
equilibrium state following the stress application is not instantaneous, but takes a finite time 
which depends on the ability of molecules to move relative to their neighbours. The observed 
response of the fluid depends on the relative duration of the applied stress compared with 
the time constant, or relaxation time, which is associated with the change in equilibrium. 

The phenomenon of interfacial stability in multilayer flow of viscoelastic fluids is of 
interest in many polymer processing applications, such as coextrusion of films and fibres. 
However, the manufacture of these multilayer plastic structures is not without problems. 
One major problem is the formation of interfacial waves which can result in a significant 
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deterioration of product properties (i.e. mechanical, optical, vapour barrier, etc). Hence, 
to establish processing windows for stable operation of coextrusion processes, a better 
understanding of interfacial instabilities is required. 

Very few papers have been written on viscoelastic surface waves (Tejero et al [l], 
Borcherdt [2], Cume et al [3,4] and Zahorski [5 ] ) .  Recently, in 1990, Saasen [6,7] 
investigated the surface gravity waves on a semi-infinite incompressible Maxwell fluid. 
He found that damped Rayleigh-type gravity waves may exist on a surface of a fluid. He 
found also that for sufficiently large wavenumber, elasticity promotes travelling waves. His 
discussion did not include the effect of electrical s h s s  on the stability and his discussion 
of the dispersion relation is not complete. He plotted the dispersion relation against the 
wavenumber. 

In recent years some experimental studies have addressed the problem of interfacial 
stability. Yu and Sparrow [8] studied the superposed flow of mineral oil and water in a 
transparent rectangular duct and showed that viscosity stratification is sufficient to cause 
interfacial instability even at low Reynolds numbers. However, with their experimental 
device they were unable to investigate the effect on disturbance wavelength of the stability 
of the interface. Lee and White 191 studied the interfacial deformation of two superposed 
viscoelastic fluids in a capillary die and showed the existence of interfacial instabilities in 
these flows. Han et al [IO] examined superposed flow of two polymer melts in a slit die. 
In this investigation the region of interfacial stability was delineated as a function of the 
interfacial viscosity ratio and layer-depth ratio. Wilson and Khomami Ill-131 examined the 
nature of interfacial deformation and instability in multilayer viscoelastic fluids under various 
flow kinematics (i.e. shearing, extensional and mixed) in superposed plan Poiseuille flows. 
They investigated the role of elasticity in interfacial stability, the existence of subcritical 
and supercritical bifurcations and the combined effects of interfacial instability and layer 
encapsulation. They found experimentally that elasticity plays a key role in the interfacial 
instability problem. 

The purpose of this work is to examine theoretically the effect of the electric force on 
the interface separating two semi-infinite Maxwell fluids. The electric field will be treated 
2s a constant electric field. The linear stability theory will be considered here. 
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2. Formulation of the problem 

Consider an interface at the plane y = 0 between two semi-infinite fluids. The system is 
assumed to have a viscoelastic nature described by the Maxwell constitutive relation. Both 
the fluids are incompressible, isotropic and dielectric. The system is assumed to be stressed 
by a tangential electric field given by 

E = Eoe,. 

The system is initially motionless. The motion results from interfacial perturbations. The 
surface deflection is expressed as 

Y = K x ,  0. (2) 

The unit normal vector to the interface is: 

a t  n = --ex +e,.. 
ax (3) 
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The equations which govern the behaviour of a Maxwell fluid are: 

a -v, = o  
axj 

avi a v ,  
q j + I  -+h- q j = p  -+- ( i t  a:k) ( axj ~ axi) 

where uij is the stress tensor, q j  is the stress deviator uij - xij and I is the Maxwell 
relaxation time. The fluid density and viscosity are denoted by p and p, respectively, V 
is the velocity vector and F is the body force per unit mass. The electric stress nij 1141 is 
given by: 

0) n,. - -=a.. + E E . E .  - 1&E2a.. V - 'I l J Z  ' I  

where x is the modified pressure defined by: 

(8 )  2 sc = P - $&Eo 

and where P is the hydrostatic pressure, and & is the dielectric constant. Equations (4) and 
(6), in vector form are: 

[ 1 + I  ( A  at  + v . v)] [a,+ at (V . V ) V ]  

= -'[ P (a", )I I + A  -+v . v  Vx+vVZV-gey  

where U = p / p  is the kinematic viscosity. The equilibrium state for equation (9) is: 

The superscripts r = (1) and (2) refer to upper and lower fluids, respectively. Integrating 
equation (10) with respect to y we obtain 

where C(') and C(*) are the timedependent constants of integration. 

equations reduce to: 
We assume that the quasi-electrostatic approximation is valid [15]; then Maxwell's 

v .  (&E) = 0 (12) 

and 

V x E = O  or E=-Vd 

where $ is the electrostatic potential. 
Two types of boundary conditions suffice to properly constrain the field equations: 

conditions at an infinite (perpendicular) distance from the system and conditions at the 
dividing surface. The former express the requirements that the electric field and the velocity 
vector tend to zero at infinity. Interfacial boundary conditions can be divided into Maxwell's 
electric conditions, kinematic relations and stress balances. 
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(a) Maxwell’s electric conditions. 

y = 0. This leads to 

A E M A Mohamed et al 

(i) The tangential component of the electric field should be continuous at the interface 

n x (E‘” -E‘”) = 0 (y = 0). (14) 

(ii) The normal component of the electric field is continuous across the interface y = 0. 
That is 

n . (#)E“) -&@)EO)) = 0 (y = 0). (15) 

(b) Kinematic relations. The kinematic boundary conditions at the interface of the system 
are as follows: 

(i) The first kinematic relation follows from the assumption that the velocity vector in 
each of the phases of the system is continuous at the dividing surface. This implies that 

n. (VW - VO) = 0 

n x (V‘” - V‘Z’) = 0 

( y  = 0) 

( y  = 0). 

(ii) An equatidn expressing the assumed material character of the dividing surface is 
required. Such an equation is 

where V, and V, are the tangential and normal velocities, respectively. 
(iii) The conditions satisfied by the stress at the interface is 

(U!!’ CI - u.?))nj V = - T ( v .  n)ni  ( y  = 0). (19) 

3. Perturbation equations 

The linearized equations governing the perturbation quantities are readily found to be 

v.q=o 
V . (EEL) = 0 

V x El =O. 

Since El is a conservative field, then there exists a potential function 61 such that: 

E1 = - V@l (24) 

E = Eoe, - -Vq51 (25) 
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and hence 

v241 = 0. 

If we take the divergence of equation (20) and use the continuity equation (21) we obtain: 

(I + A;) V2n1 ( x ,  y .  t) = 0. 

Operating on both sides of equation (20) by V2, using equation (27) we obtain 

v2 v2-- l + h -  - via. [ : ( aai) aa,] 
The linearized boundary conditions are 

(29) 
a 

-r@(x, Y ,  t )  - p ( X ,  Y ,  01 = 0 ax 
p & ( & ( I )  - (2) a 

ay 

(1) (2) a 
VIY (x, Y .  0 = VIY (x, Y .  t )  = -w t) 

at 

a 
-[V$)(x, y ,  t )  - vi;)(& y ,  t ) ]  = 0 
ay 

ny(u:) -U:’) = -njTV2e (y = 0) (33) 

(Y = 0) 

(30) E )(Eo + -(&(I)#) - E ( ~ ) # ) )  = 0 ( y  = 0) 

(31) 

(32) 

~ 

(Y = 0) 

( y  = 0). 

The continuity of the normal stress uij at the interface y = 0 requires that: 

where T is the surface tension through the surface separating fluids. The stress tensor uij 

is given by: 

(I + A:) utj = (1 +A$) (-nJij + E E ~ E ~  - i ~ E ~ 6 t j )  + P (34) 

Substituting from (11) into (33), using (34). the result is 
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The continuity of the tangential stress across the interface y = 0 requires that: 

A E A4 A Mohamed et a1 

Using the continuity equation (21) we obtain: 

(Y = 0). (36) 

In order to obtain a travelling-wave solution we may assume the following dependence: 

. g X ,  t )  = y(t)e'" (37) 

~ ( x ,  y. t )  = P ( y ,  t)e*" 

K ] ( X ,  y. t )  = ?(y, t)e"'; 

41(X,Y,t)=4(YIt)eikx (38) 

(39) 

(40) 

where k is the wavenumber, which is assumed to be positive. Substituting expansion (38) 
into equation (26). the solution of the resulting differential equation leads to: 

(41) 41(x ,  y, t )  = [CI(t)e+ + ~Z(t)e~y]ei". 

Since & ( x ,  y, t )  must be finite as y + iw, equation (41) reduces to: 

&(x ,  y, t )  = c1(t)eikx+ 

4?)(x, y ,  2 )  = C2(2)ei~+kY. 

(42) 

(43) 
Substituting from expansions (42) and (43) into equations (29) and (30), we obtain: 

Substituting from (39) into equation (20), the resulting y-component is: 

If we substitute from (39) into equation (28), the resulting y-component is: 

where V$(x, y .  t )  = ?$)(y, r)eSz is the normal velocity of (39). 
This problem has been treated particularly for viscous fluids in absence of elasticity and 

electric field by Chandrasekhar 1181. The additional problem of  viscous fluid influenced by 
constant electric field has been treated by Melcher and Scharz [ZO]. 
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4. The solution using the method of multiple time-sfales 

The complexity of the mathematical problem forces us to use a perturb at ion^ technique. We 
use the method of multiple timescales in order to carry out the stability analysis of the 
problem [16]. In applying the method of multiple time-scales, we may use the time-scales 
TO and TI so that: 

To = t and 4 = a  

where 2 is a small dimensionless parameter defined as: 

= Ix(1) and A(2) = S x ( 2 )  

with finite X(’),(’). 
Because the vanishing of the Maxwell relaxation time A from the equation of motion 

(9) leads to the NavierStokes equation, the small dimensionless parameter I is introduced 
such that when I = 0 the fluid behaves as a purely viscous fluid. This is the reason to 
choose I as a small magnitude of the relaxation time. 

One assumes that the solution of equation (47) can be represented by an expansion 
having the form: 

~ Y ( Y .  t ,  2) = ~ o ( Y .  To, 4 )  +~.CI (Y,  To, Ti) + Z ’ ~ Z ( Y ,  To. Ti) + .... (48) 

Also, we may consider the following expansions: 

y o ,  2) = YO(TO, TI) ++I vO, T,) + I ~ V Z ( T O ,  4 )  + . . . (49) 

i r (y , t , I )= iro(y ,To , ~ ) + I ~ ~ I ( Y , T O , T I ) + ~ ~ ~ ~ Z ( Y , T ~ , T ~ ) + . . .  (50) 

J(Y, f ,  8 = JO(Y. To, 4 )  + &LV, To7 TI) +I%(Y, To, 4)  + .... (51) 

The scheme assumes that the fluid response is a perturbation about the Newtonian 
state (viscous fluid) [17]. The perturbation scheme is applied to analyse the effects of the 
elasticity when balanced with the viscosity under the effect of an electric field. 

Substituting from the expansions (48), (49), (50) and (51) into the equations of motion 
(46) and (47) and the boundary conditions (31), (32), (35) and (36), and equating the 
coefficients of equal powers of 2, we obtain equations of zero-order and first-order in I .  

5. The zero-order problem 

In deriving the characteristic equation, in the zero-order problem, we may assume the 
solution of zero-order equations as follows: 



3944 

where uo is the frequency of the disturbance. Thus the distribution of the velocity and 
pressure in the two phases are obtained to be 

(55) 

(56) 

A E MA M o h e d  eta1 

?t)(y, TO, T I )  = [(uo - 2 A ~ ) e - ~ ~  + 2Aze-k"'1y]y~(~)e"nfi (Y > 0) 

?t)(y, To, TI) = [(UO - 2Al)ekY + 2Alek"'Y]y~(fi)eooG (y i 0) 

p(j)uo + (-1)j+Ik2(1 - 4)(u(1)p(1) - (2) (2) 
? p .  ?]. (60) p(')(l - mz) + p(z ) ( l  - ml) 

'with the following dispersion relation: 
4k4(m~-l)(m~-l)(u'~~~~1~-u~~p~~)z-4k~uo(,((m~ -1)] 

- [p")  (mz- l)+p@) (m I - l)] [kz E&*+kB +u&("+p(*))] -4p(')p(')u$ = 0 

(61) 

Aj  = 

where E* = w. L . , . .  

In the limit of no electric field, the dispersion equation (61) is reduced to that discussed 
by Chandrasekhar [18]. 

6. The firsborder problem 

The knowledge of the Newtonian problem obtained in the zero-order problem is sufficient 
to determine the solution at this order. The solvability condition corresponds to terms 
containing the factor of e''0'0. Hence the solution of the above set of equations in terms of 
era% is given by: 

G:?(y, T ~ ,  T ~ )  = ~ ( 1 -  c,) - ~ z l e - ~ ~  
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where 

Thus, to first-order in 2, the velocity V,(;)") and the pressure rf:'." complete the set of 
solutions. Substituting the above solutions into the first order in E of the boundary condition 
(33, the resulting differential equation (Le the solvability condition) is: 

[(PI + k ) D i  + (PZ + i q ~ ) / . % d ~ ~ )  = 0. 

In terms of the original variable (t) .  we obtain: 

(68) 

where the complex coefficients of the above equation depend on the nature of the roots of 
the dispersion relation (61). These coefficients are given in the following: 

PI+& = Zk2p(')v(')[Cz(ml - 1 ~ - B ~ + l l + ~ ~ p ~ ~ ~ v ~ ~ ~ [ C 1 ( m ~ -  l ) - B l + l ] + 2 ( p c 1 ~ + p c z ~ ) u ~  

- ( p ( l ) C z + p ( z ) C ~ ) ~ ~  -2(p( ' )Az+p"Ai)  + -(p(z)mlA1 +p(')m2Az) 

(69) 

1 d 
(PI + iqd- + (PZ + iqz) v( t )  = 0 [ dt 

2 
mlmz 

p z  + iqz = 2kZp(')u(')[Bz(ml - 1 )  - i(')r; - i(')u0(ml - l ) A Z ]  

+ 2 k 2 p ~ z ~ u ~ z ) [ B ~ ( m ~  - 1 )  - i.(')u; - i ( z ) ~ o ( m z  - l ) A l ]  

Since equation (68) is a first-order differential equation with complex coefficient, then 
the necessary and sufficient condition for stability is: 
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7. Special case 

Due to the complexity of equation (61) we will restrict our discussion of stability to the 
case when the kinematic viscosities of the two fluids are the same, i.e when v(l)  = dZ) = U, 
consequently ml = mz = m. This assumption simplifies the dispersion equation (61) to the 
form: 
(m - 1){8k4u2(p(') - p('))' + 4kZuao(p(') - p")' + k2E&* + kC)(p(l)  + p")] 

A E M A  Mohumed et ul 

+ mu:(p(') + p")' - U&(') - P(~))'(UO + 4k'u) = 0. (72) 
A dimensionless length and time will be introduced to present equation (72)  in 

dimensionless form by using the characteristic length L = (T/p(2)g) ' /2  and the characteristic 
time to = (L/g)'/'. Other dimensionless quantities are given by: 

' - E * -  . L  
k = k * / L  uo = ~ * / b  U = ~*L'/fo Eo - T .  

The characteristic eauation is then 

and 
U* 

k*'v* 
m*, = 1 + -, (74)  

Due to the lranscendeutal equation (73) the square of it must be calculated in order to 
take a polynomial form and then for the stability analysis to be available for the problem. 
In the squaring process unrelated solutions will also appear and a fourth-degree polynomial 
is obtained: 

(75)  
where 

d a*( + + uza + u p *  + = 0 

U' = - 2k' [k*&'Ef + k* + (1 - p) + 12k*'~*~p']  

a1 = - ([3p*+(1 +p)l[k*&"E,f +k''+(l - p ) ] + 8 k N 3 u a 2 ( l  -p')) 

(1 + P )  

2ky3 
( 1  + PI2  

'*' [ k * C E f  +k" + (1 - p ) ] [ k * ~ * E f  +k" + (1 - p )  + 8k*zu"'p*]. 
(1 + P ) Z  

According to the assumption of U ( ' )  = U(') = U, the solvability condition (68) reduces 

(76) 

The quantities p; ,  p;, 4; and 4; are r d  and are given in the appendix. Here the stabiIity 
condition (71) reduces to: 

(77) 

to: 

1 d [ ( p ;  + iq;) + ( p ;  + iq;) = 0. 

P;P; + 4;41 ' 0. 
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8. Numerical results 

The characteristic equation (75) controls the stability in the zero-order problem, i.e the case 
of pure viscosity. The stability conditions in this case will be obtained as follows. 

Each negative root (or complex root with a negative real part) of equation (75) 
corresponds to a stable mode of the interfacial disturbance. Using the Hunvitz criterion 
for stability, the necessary and sufficient condition for interfacial stability (for all the roots 
or to have negative real parts) are 

(79) 2 (ii) U ,  (U2U3 - U I )  - UOU, > 0. 

The above conditions for stability can be summarized as two conditions [19]: 

(80) 2 a0 > 0 and al (a2~3 - U , )  - u0u3 z 0. 

The first condition, Q > 0, is trivially satisfied when p < 1, i.e when the lower fluid is 
heavier than the upper one, which characterizes a variety of physical situations. In the case 
of p > 1, stability occurs in the presence of the electric field. Condition a0 > 0 is satisfied 
when 

where 

and 

Note that 81 > I%. The inequality (79) can be rearranged in terms of Et to become: 

E: + b l E t  + b o  < 0 (83) 

where 

bl =-  ~+ 2 *2 512k' v p*(2p8 + 4p7 - p6 - 2p5 + 4p4 - 2p' - p2 +4p  + 2) 2(k*' - p + 1 )  
k*&* 

(84) 
&*(I + P)4[P" - (1 + p)212 

51% * 2 *  V p [k*' + (1 - p)](2p8 +4p7 - p 6 -  2p5 +4p4 -2p3  - p 2 + 4 p + 2 )  

&tP(l  + P)4[P*Z - (1 + p)212 
bo = - 
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The equality of the relation (83) is a quadratic equation in E t  which has two roots E3 and 
&, given by: 

A E M  A Mohamed et a1 

If the roots E3 and 
positive. Substituting from (84) and (85) into the discriminant, we get: 

> &) are to be real, the discriminant in equation (83) should be 

2 512 (2p +4p 7 6  - p  -2p5+4p4-2p3-p2+4p+2)2  bl - 4bo = - 
(1 + PI2 

+ 2[p" - (1 - ~ ) ~ 1 ~ ~ 1 1 ( 1  - p2)2 + 8p(l - p)'+ 8p21 z 0 

which is automatically satisfied for all values of p. Relation (79) is satisfied if 

( E f  - E3)(Ef - k4) c 0 

which may be reduced to the following requirement: 

E 4  c Ef < &. 
From the above discussion we see that~the system is stable provided that the electric field 
E$ satisfies either of the following conditions: 

(87) 

E f  >hi  and & < E f  < E 3  

or 

E," c & and E4 c E," c e,. 
In figures 1 and 2 we plot El, &, d3 and E4 against k" for a system having p = 2.5, i.e 
the system is statically unstable. Two different cases are considered for which v* = 0.1 
and 0.5. To show the effect of the kinematic viscosity on the stability, we observe that the 
increase in stable regions is associated with the increase of the values of U'. The presence of 
viscosity leads to the existence of a stable region. The electric field controls the boundaries 
of the stable region. The increase of the field decreases the width of the stable ranges of 
k'. In the limit as E,* + 0, calculations show that stability is possible except for values of 
k* < 0.707107 for all values of U*. For very small values of the wavenumber, very Iarge 
values of u' are needed to express the instability of the system. 

In figure 3 the system has p = 0.1 (i.e. the system is statically stable) and two different 
v* (U' = 0.1 and U* = 0.3). The area labelled by the symbol SI refers to the case of 
v' = 0.1. When U' changes to Y* = 0.3 an additional stable area SZ is presented. Hence 
the decrease in the values of U* decreases the stable regions. Thus the tangential electric 
field has a destabilizing effect contrary to the case of inviscid fluids. This result was also 
obtained by Melcher [ZO] in dealing with a different model for viscous fluids. 

The stability condition (77) is plotted in the (k' - E * E ~ )  plane for some sample cases. 
We may note that the RHS of condition (77) depends on U', which is determined by 
equation (75). Since equation (75) has four roots, it is necessary that every root should 
satisfy condition (77) independently. The regions in the (k* - E * @ )  plane labelled by (S) 
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.l .2 3 L .5 d .7 1 1. U L? 13 Y 15 
-K 

Figure 1. Represents the plane (k - E:) for a system 
having p = 2.5, E' = 0.01 and U" = 0.1. The curyes 
E; (i = 1.2,3,4) are given by the relations (811, (82) 
and (86). The symbol (S) refers to the stable regions 
and (U) denotes unstable regions. 

-K 

Figum 2. Represents the same system considered in 
figure 1, but U* = 0.5. 

represent situations where every point in the region satisfied inequality (77) for the four 
values of a*. 

Figure 4 represents a system for p = 0.1, U* = 0.5 and A,,(= A(*)/A(')) = 0.1. The l i t  
when E' E t  + 0 is calculated numerically. It is found that the two branches bounding (S) 
intersect the line &*E;' = 0. This means that the system is unstable (though p = 0.1 < 1, 
i.e statically stable). Figure 4 shows that the presence of the field produces a stable region. 
Thus the field has a stabilizing effect. The increase in the field changes the area of stability, 
which continues to increase until there is a critical value in the field (&*E$ = 260.7) and 
then the area decreases with the increase in the field. Figure 5 represents the same system, 
except that A0 is increased to the value ho = 1. Comparing the two figures we observe that 
the increase of A0 for fixed U* has a destabilizing influence. Figure 6 represents the same 
system considered in figure 4 but U* is changed to the value v* = 1.5 and ho is changed to 
the value lo = 1. It is observed that the increase in the kinematic viscosity in the presence 
of the elasticity yields a destabilizing effect. Figures 7 and 8 represent a system where 
p = 1.5 z 1. This means that the system was statically unstable. Thus larger values of 
the field are required for stability. In figure 7 the minimum value required for the field is 
E * E , ~  = 23, while &*E;' = 21.8. 

9. Conclusion 

With the use of the method of multiple time-scales, we perform an investigation of the 
Rayleigh-Taylor problem of interfacial stability in a two-layer system of electroviscoelastic 
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-K  

Figure 3. 
E' =0.01 and Y* = 0.1 and 0.3. 

Represents the system having p = 0.1, 

Figure 5. Represents the same system considered in 
figure 4, but AD = 1. 

-K 

Figure 4. Represents a sLzble diagram for a system 
havingp = 0.1, U* = 0.5 and Ao = 0.1. The (k-E'E;) 
plane is plotted from the stability condition (75). 

Figure 6. Represents IIU m e  system considered in 
figure 4. but U* = 1.5 and 10 = I. 



Electrovixoelastic RT instability of Maxwellfluids 395 1 

Figure 7. Represents the same system considered in 
figure 4, but p = 1.5 and 10 = I. 

Figure 8. Represents the same system considered in 
figure 4, but p = 1.5 and ).o = IO. 

Maxwell fluids. We examine the effects on the stability of the interface by applying a 
constant electric force which is tangential to the interface separating the two fluids. 

The stability analysis has been based on the linear perturbation theory. Through the 
linear perturbation analysis we obtain a fourth-order partial differential equation, which 
governs the motion of linear viscoelastic fluids. The motivation for using perturbation 
technique, such as a method of multiple-scales approach, based on the fact of the Maxwell 
fluid nature, has a small deviator from the viscous fluid. Thus the scheme considered here 
assumes that the viscoelastic flow is perturbed about the viscous fluid. The contribution of 
the elasticity is included in the first-order problem. Due to the linear stability theory we 
stop at the first-order perturbation expansion. In the nonlinear stability we can go to higher 
orders of the problem. The nonlinearity of the problem at hand will not be discussed here 
and it will be the subject of a subsequent paper. 

The numerical computations show that the kinematic viscosity plays a stabilizing role in 
the zero-order problem, i.e in the absence of the elasticity (A = 0) and opposite role in the 
first-order problem, i.e in the presence of A. Thus the viscosity has changed its mechanism 
in the non-Newtonian state to play the same destabilizing role that the Maxwell relaxation 
time A is playing. 

Appendix A 

The governing equations of the zero- and first-order problems are listed below. 
(I) The set of the zero-order equations are: 
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Appendix B 

To separate the real and imaginary parts of equation (76). If we take 

uo = x + iy 

then m*, which is given by relation (74), takes the following form: 

m * = a t i b  
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where 

Substituting from (Bl) and (B2) into (69) and (70) and considering the case of d l )  
U for separating the real and imaginary parts, we obtain: 

U @ )  = 

p; ~ ~ ( ~ ~ - 3 ~ ~ ) ( 1 + p ) ~ + k ~ ~ * [ ( ~ ~ - ~ ~ ) [ 5 ( 1 - p ) ~ + 8 p l - [ ~ ( ~ ~ - y ~ ) - 2 b x y ] [ 2 ( 1  -p)’+5p]] 
*4 x i  +k v [x[5(1 -p)’+2pl -(ax -by)[7( 1 -p)’+4p]]+6k” U*’ (1  -a)(l  - p)’ 

(B5) 
4; = ~ ~ 3 x 2 - y 2 ) ( 1 + p ) 2 + k * 2 u * ( 2 x y [ 5 ( 1  -p) ’+8p]  - [b(x2-yz)+kxy][2(  1 -p)’+5p]] 

+k  v {y[5(1 - p ) 2 + 2 p l - ( ~ ~ + b ~ ) [ 7 ( 1  - p ) z + 4 p l l  -6P6u*lb(l  -p)’ *’ * I  

(B6)  
pz = Ap[2(x4 - 6x2y2 + y4)(2 - a - p - p2)  + 8bxy(x2 - y2)  

+ kl”V*(7p2 + 4 p  - l l ) [ u x ( x 2  - 3y2) - by(3x2 - y2)J 

-2x(x2 - 3y2)(8p2 +6p - 11) +2k*4u’*[( 1 l p 2  +2p - 13)[a(x2 - y2)  -2bxyl 

- ( ~ ~ - y ~ ) ( 1 5 p ’ + 2 p -  17)1+k’6~3(l - p 2 ) ( 1 6 - u x + b y ) ]  

+2(x4-6x2y2+y4)[(2-u)p2-p- 11+8pbxy(x2-y2)+k*2u’[x(x2-3y2) 

X [ 1 1 ( 2 - a ) p 2 + 4 ( a - 3 ) p + 7 a - 1 6 1 + b y ( 3 x 2 - y 2 ) ( l l p 2 - 4 p - 7 ) ]  
*4 *z 2 + 12k U [ ( 1 7 p  -2p - 1 5 ) ( ~ ~ - y ~ ) - ( 1 3 p ~ - 2 p -  l l ) [ ~ ( x ~ - y ~ ) - 2 b x y ] }  

037) 
*6 3 + k U (1  - p2)(ax -by - 16) 

4; X p [ - 2 [ 4 a ~ y ( x ~  - y2) + b(x4 - ~x’Y’ + y4)1 - 8xy(xZ - y2)(p’ + P - 2)  

+ k*’u*2y(3x2 - y z ) ( l l  - 6p - 8p’) + (7p’ + 4 p  - l l )[ay(3x2 - y2)  

+ b X ( X  - 3Y2)l] + u(*4V*z[ ( l lp2  + 2p - 1 3 ) [ k x y  + b(x2 - y’)] 

- 2 ~ ~ ( 1 5 p ’  + 2 p  - 1711 - k*6~*3(1  - p2)(uy + bx)]  - 2p2[4nxy(x2 - y 2 )  

+ b(x4 - 6x2y2 + y4)] + 8xy(2p2 - p - l ) (x2  - y2)  + k*2u*(2(3x2 - y2)  

X ( l l p 2  - 6 p  - 8) - (llp’ - 4 p  - 7)[ay(3x2 - y’) +bx(x2  - 3yz)]]  

+ u ( “ ~ * ~ [ 2 X y ( l 7 p ~  - 2p - 15) - (13~’ - 2 p  - 11)[2uxy + b(x2 - y z ) ] ]  

+k“u*’(l -p’)(uy+bx) (B8) 

A = h(’)/A@). (B9)  

2 
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